Fate-mapping the mammalian hindbrain: segmental origins of vestibular projection neurons assessed using rhombomere-specific Hoxa2 enhancer elements in the mouse embryo.

نویسندگان

  • Massimo Pasqualetti
  • Carmen Díaz
  • Jean-Sébastien Renaud
  • Filippo M Rijli
  • Joel C Glover
چکیده

As a step toward generating a fate map of identified neuron populations in the mammalian hindbrain, we assessed the contributions of individual rhombomeres to the vestibular nuclear complex, a major sensorimotor area that spans the entire rhombencephalon. Transgenic mice harboring either the lacZ or the enhanced green fluorescent protein reporter genes under the transcriptional control of rhombomere-specific Hoxa2 enhancer elements were used to visualize rhombomere-derived domains. We labeled functionally identifiable vestibular projection neuron groups retrogradely with conjugated dextran-amines at successive embryonic stages and obtained developmental fate maps through direct comparison with the rhombomere-derived domains in the same embryos. The fate maps show that each vestibular neuron group derives from a unique rostrocaudal domain that is relatively stable developmentally, suggesting that anteroposterior migration is not a major contributor to the rostrocaudal patterning of the vestibular system. Most of the groups are multisegmental in origin, and each rhombomere is fated to give rise to two or more vestibular projection neuron types, in a complex pattern that is not segmentally iterated. Comparison with studies in the chicken embryo shows that the rostrocaudal patterning of identified vestibular projection neuron groups is generally well conserved between avians and mammalians but that significant species-specific differences exist in the rostrocaudal limits of particular groups. This mammalian hindbrain fate map can be used as the basis for targeting genetic manipulation to specific subpopulations of vestibular projection neurons.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An ultraconserved Hox–Pbx responsive element resides in the coding sequence of Hoxa2 and is active in rhombomere 4

The Hoxa2 gene has a fundamental role in vertebrate craniofacial and hindbrain patterning. Segmental control of Hoxa2 expression is crucial to its function and several studies have highlighted transcriptional regulatory elements governing its activity in distinct rhombomeres. Here, we identify a putative Hox-Pbx responsive cis-regulatory sequence, which resides in the coding sequence of Hoxa2 a...

متن کامل

A regulatory module embedded in the coding region of Hoxa2 controls expression in rhombomere 2.

Here, we define a gene regulatory network for Hoxa2, responsible for temporal and spatial expression in hindbrain development. Hoxa2 plays an important role in regulating the regional identity of rhombomere 2 (r2) and is the only Hox gene expressed in this segment. In this study, we found that a Hoxa2 cis-regulatory module consists of five elements that direct expression in r2 of the developing...

متن کامل

Loss of Projections, Functional Compensation, and Residual Deficits in the Mammalian Vestibulospinal System of Hoxb1-Deficient Mice1,2,3

The genetic mechanisms underlying the developmental and functional specification of brainstem projection neurons are poorly understood. Here, we use transgenic mouse tools to investigate the role of the gene Hoxb1 in the developmental patterning of vestibular projection neurons, with particular focus on the lateral vestibulospinal tract (LVST). The LVST is the principal pathway that conveys ves...

متن کامل

Opposing roles for Hoxa2 and Hoxb2 in hindbrain oligodendrocyte patterning.

Oligodendrocytes are the myelin-forming cells of the vertebrate CNS. Little is known about the molecular control of region-specific oligodendrocyte development. Here, we show that oligodendrogenesis in the mouse rostral hindbrain, which is organized in a metameric series of rhombomere-derived (rd) territories, follows a rhombomere-specific pattern, with extensive production of oligodendrocytes ...

متن کامل

An enhancer element in the EphA2 (Eck) gene sufficient for rhombomere-specific expression is activated by HOXA1 and HOXB1 homeobox proteins.

In the hindbrain of the mouse embryo, there is often coincident rhombomere-restricted expression of Eph receptor tyrosine kinases and Hox homeobox genes, raising the possibility of regulatory interactions. In this paper, we have identified cis-acting regulatory sequences of the EphA2 (Eck) gene, which direct node and hindbrain-specific expression in transgenic embryos. An 8-kilobase region of m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 27 36  شماره 

صفحات  -

تاریخ انتشار 2007